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Abstract—Robotic manipulation tasks are contact-rich, yet
most imitation learning (IL) approaches rely primarily on vision,
which struggles to capture stiffness, roughness, slip, and other
fine interaction cues. Tactile signals can address this gap, but
existing sensors often require expensive, delicate, or integration-
heavy hardware. In this work, we introduce MicCheck, a plug-
and-play acoustic sensing approach that repurposes an off-the-
shelf Bluetooth pin microphone as a low-cost contact sensor.
The microphone clips into a 3D-printed gripper insert and
streams audio via a standard USB receiver, requiring no custom
electronics or drivers. Despite its simplicity, the microphone
provides signals informative enough for both perception and
control. In material classification, it achieves 92.9% accuracy
on a 10-class benchmark across four interaction types (tap,
knock, slow press, drag). For manipulation, integrating pin
microphone into an IL pipeline with open source hardware
improves the success rate on picking and pouring task from 0.40
to 0.80 and enables reliable execution of contact-rich skills such
as unplugging and sound-based sorting. Compared with high-
resolution tactile sensors, pin microphones trade spatial detail
for cost and ease of integration, offering a practical pathway for
deploying acoustic contact sensing in low-cost robot setups.

Index Terms—Acoustic sensing, imitation learning, low-cost
hardware.

I. INTRODUCTION

Imitation learning (IL) has advanced robot manipulation
substantially, yet many everyday skills remain contact–rich:
task success often hinges on cues that are difficult to perceive
with vision alone (e.g., stiffness, roughness, damping, incipient
slip, and micro-impacts at the contact interface). Tactile and
acoustic feedback can complement vision by sensing contact
events directly and by improving robustness under occlusion
or challenging illumination. However, practical adoption of
tactile sensing faces a deployment gap: higher-performance
solutions (e.g., vision-based tactile sensors, custom contact
microphones, piezoelectric arrays) tend to be costly, fragile,
or integration-intensive (amplifiers, drivers, bespoke software),
limiting their use outside well-equipped laboratories. Notably,
many manipulation tasks do not require ultra-fine spatial
resolution; rather, they benefit from reliable, timely signals
that separate no-contact from meaningful contact, discriminate
broad material classes, and flag events such as slip or impact.
In such regimes, a simpler, lower-cost, and easier-to-integrate
sensor can be a reasonable trade-off. We propose MicCheck,
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Fig. 1. Overview of MicCheck. We repurpose low-cost pin microphones
for contact sensing. We demonstrate this through two experiments: robotic
manipulation and object classification.

a plug-and-play approach that repurposes an off-the-shelf
Bluetooth pin microphone as a low-cost contact sensor. The
microphone clips into a 3D-printed gripper insert and operates
out of the box—no custom electronics or drivers—while the
stock foam provides compliance and robust acoustic cou-
pling. Despite its simplicity, MicCheck yields signals that
are informative for both perception and control: in material
classification, it attains 92.9% window-level accuracy on a
10-class benchmark, and in manipulation, incorporating audio
into an IL policy improves bottle-cap pouring success from
0.40 (vision only) to 0.80 (vision+audio) and supports two
additional contact-rich tasks (texture sorting and high-friction
unplugging). These results indicate that low-cost acoustic
sensing can provide useful contact awareness, though it does
not replace higher-resolution tactile sensors for fine spatial
discrimination.

Our contributions are as follows (Fig. 1): (i) A mini-
mal, low-cost acoustic contact sensor using an unmodified
consumer microphone and a simple mechanical mount; (ii)
integration into classification and an IL pipeline showing
consumer microphone complements imitation learning and is
beneficial to contact-rich tasks.

In this paper, Sec. II reviews tactile and acoustic sensing
and positions our work. Sec. III details hardware, signal
processing, and the learning setup. Sec. IV presents material
classification and real-world manipulation results with abla-
tions and discussion. Sec. VI concludes, and Sec. V outlines
limitations and future directions.
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II. RELATED WORK

A. Passive Tactile Sensing

Passive tactile sensing methods measure interaction signals
without injecting external stimuli. Traditional approaches rely
on resistive, capacitive, or force–torque sensors, while more
recent systems leverage vision-based tactile designs. Notable
examples include the TacTip family of optical biomimetic
fingertips [1], GelSight for high-resolution geometry and force
estimation [2], and derivatives such as GelSlim [3], DIGIT [4],
and OmniTact [5]. Magnetic-based sensors such as ReSkin [6]
offer scalable, low-cost tactile skins. Passive acoustic sensing
has also been explored, e.g., SonicSense [7], which embeds
contact microphones into a multi-fingered hand to capture
vibrations for object recognition and material classification.
These methods demonstrate that passive signals can encode
rich contact information, though often at the cost of custom
fabrication or integration.

B. Active Sensing

In contrast, active tactile sensing injects energy—through
motion or actuation—into the environment and interprets the
response. Active haptic perception surveys [8], [9] highlight
how active strategies enable disambiguation of materials and
shapes. Lepora et al. demonstrated exploratory tactile servoing
using TacTip [10], while more recent work formalizes servoing
with pose and shear features [11]. Martinez-Hernandez et
al. [12] applied active sensorimotor control for autonomous
tactile exploration, and Shahidzadeh et al. [13] combined
reinforcement learning with active tactile exploration for shape
inference. Within acoustics, Lu and Culbertson [14] demon-
strated active acoustic sensing for grasp state estimation,
while VibeCheck [15] achieved robust peg-in-hole insertion
using only an emitter–receiver acoustic pair. Active methods
thus provide controllable, discriminative signals but increase
hardware complexity.

C. Acoustic Sensing in Robot Learning

Acoustic signals have recently been explored as a com-
plementary modality for robot learning in contact-rich tasks.
Some studies use audio–visual pretraining to improve gen-
eralization in low-data regimes [16], while others show that
incorporating audio with vision enables better adaptation to
texture changes, slip events, and hidden object states [17].
Multimodal systems that fuse vision, touch, and audio also
improve performance on tasks such as dense packing and
pouring by combining global, temporal, and local cues [18].

Beyond passive use, active acoustic sensing has been ap-
plied to infer material properties and grasp states through
wave transmission [14], and recent work shows that audio-
only feedback can support robust imitation-learned peg-in-hole
insertion [15]. Together, these results highlight how acoustic
cues capture contact events that are hard to perceive visually
or tactually. Our work follows this trend but emphasizes
accessibility, using an off-the-shelf microphone as a plug-and-
play solution for perception and imitation learning.

III. METHOD

A. Experimental Setup

We used an existing wireless pin microphone (BOYA mini,
model mini-14, 2.4 GHz) as acoustic sensor. The clip-on trans-
mitter is press-fit into the gripper mount so that its foam pad
serves as the contact interface; the included USB-C receiver
(dongle) plugs into the host PC and is enumerated as a standard
audio input (Fig. 3). To suppress ambient and motor noise
during motion, we enable the microphone’s built-in noise-
cancellation. Audio is recorded at 48 kHz/16-bit; we use a
single transmitter in all experiments.

B. Material Classification

1) Data Collection and Signal Processing: We recorded
contact sounds using the pin microphone mounted on the
gripper’s foam face while interacting with 9 everyday objects
spanning rigid solids (plastic lid, glass cup, ceramic mug,
steel tumbler, wooden table) and compliant/textured surfaces
(leather case, plush toy, notebook), plus a blank (no-contact)
condition. Speed and normal force were varied across trials.

We collected four interaction types with the selected objects:
• Tap: a light, brief touch followed by immediate release.
• Knock: a firmer impact that tends to excite audible

resonance.
• Slow press: a gradual press and hold with mainly normal

contact.
• Drag: continuous sliding while maintaining contact.
Audio is converted to Mel-spectrogram features. Long

recordings are segmented into fixed 1 s windows without
overlap; each window is mapped to a log-magnitude Mel spec-
trogram. This configuration captures resonant peaks, spectral
envelopes, and decay characteristics informative for material
and structure. Windows with no contact form the blank class
to avoid forced guesses in the network.

2) Model: We evaluate a compact 2D CNN on single-
channel Mel spectrograms (Fig. 2). The network comprises
three Conv–BN–ReLU blocks, global adaptive average pool-
ing, and a linear classifier. Windowed examples are split 8:2
(train/validation) with stratification by object class. Models are
trained with cross-entropy using Adam (lr = 3×10−4, batch
size = 32) for 2000 epochs; the best checkpoint is selected by
highest validation accuracy.

C. Robot Hardware and Teleoperation Setup

We integrate a commercial pin microphone with the LeR-
obot SO101 platform [19]. The robot gripper is redesigned
to accept the microphone via its built-in clip; the mounting
hole is dimensioned for a tight press-fit so the unit can be in-
serted/removed without additional fasteners. The microphone
is oriented perpendicular to the gripper such that its foam
pad becomes the primary contact surface on that side during
interaction. This foam provides (i) compliant contact for stable
grasping and (ii) effective acoustic coupling during object
contact, enabling seamless audio capture without modifying
the microphone form factor. We enable the device’s built-in



Fig. 2. Architecture of the contact-based object classification model. Single-channel Mel spectrograms from 4 types of mic–object interactions (tap, knock,
slow, drag) on 9 objects plus a “blank” no-contact class are fed into a compact 2D CNN comprising three Conv–BN–ReLU blocks, followed by global
(adaptive) average pooling and a linear classifier. Models were trained with an 8:2 train/validation split (stratified by class) using cross-entropy loss and the
Adam optimizer (learning rate 3× 10−4, batch size 32) for 2000 epochs, with the best checkpoint selected by highest validation accuracy. The blank class
in the softmax serves as a rejection threshold for low-evidence windows.

Fig. 3. Teleoperation setup. We employ the Lerobot SO-101 teleoperation
setup with a modified gripper. A commonly found commercial bluetooth
microphone is embedded onto the gripper. The microphone is connected to a
PC via a wireless USB retriever.

noise-cancellation feature to reduce ambient and motor noise,
particularly during motion.

For data collection, we use a teleoperation setup with a
leader–follower configuration (Fig. 3). Joint states from the
leader are streamed to the follower for, a strategy shown
to be effective for collecting high-quality demonstrations for
robot learning [20]. For training, each dataset consisted of
20 demonstrations per task, collected via teleoperation with
synchronized RGB, proprioception, and audio. Compared to
vision-only pipelines, the extra audio stream introduced neg-
ligible overhead. At inference, the multimodal pipeline ran at
50 Hz, bottlenecked by the camera framerate.

D. Imitation Learning

To capture fine-grained contact dynamics, the audio stream
is segmented into 0.2 s frames at 30 Hz (a new frame every
0.04 s; 80% overlap). Each frame is converted into a Mel spec-
trogram with nmels=32. Frequencies above 0.3× the Nyquist
rate are amplified by a factor of 2.0 to emphasize sharp
impact sounds. Compared to material classification, we adopt

TABLE I
ACT TRAINING PARAMETERS

Parameter Default

Chunk size 100
Backbone ResNet-18
Pretrained ImageNet-1K (ResNet18)
Pre-norm False
Model dim 512
Heads 8
FFN dim 3200
Activation ReLU
Enc. layers 4
Dec. layers 1
VAE True
Latent dim 32
VAE enc. layers 4
Dropout 0.1
KL weight 10.0
Learning rate 1× 10−5

Weight decay 1× 10−4

Backbone LR 1× 10−5

shorter and more overlapping windows here to ensure transient
acoustic events remain temporally aligned with proprioceptive
and visual signals.

We train an Action Chunking with Transformers (ACT)
policy [21] that predicts fixed-length action sequences condi-
tioned on recent multimodal observations (Fig. 4). ACT is an
imitation learning approach that mitigates compounding error
in sequential control by predicting a chunk of future actions
at each step, rather than a single next action. This chunked
prediction reduces the effective task horizon and improves the
smoothness and robustness of the learned behavior.

In our implementation, observations include (i) RGB im-
ages from a stationary camera, (ii) the most recent audio
spectrogram frame, and (iii) robot proprioceptive states. These
modalities are fused into a unified embedding and processed
by a transformer encoder–decoder that outputs target joint
positions for the next H timesteps. The model is trained for
100k steps using the hyperparameters listed in Tab. I.



Fig. 4. Action Chunking with Transformers (ACT) architecture. Training uses a conditional variational autoencoder: a transformer episode/style encoder
produces a latent z and a transformer encoder–decoder predicts a chunk of future actions conditioned on observations and z. At inference, the transformer
encoder is omitted to generate actions in fixed-size chunks.

Fig. 5. Normalized confusion matrix for the 10-class (9 objects + “blank”)
material classification task. The model shows strong diagonal dominance,
with perfect accuracy for the blank class, glass cup, human skin, and steel
tumbler. Most confusions occur between acoustically similar soft materials
(e.g., plushie vs. leather case, notebook vs. leather case), reflecting challenges
in distinguishing objects with overlapping frequency responses.

IV. RESULTS

A. Material Classification

We obtain 92.9% window-level classification accuracy on
the 9 objects plus a blank class. The confusion matrix in Fig. 5
shows strong diagonal dominance, with perfect separation for
blank, glass cup, ceramic mug, human skin, and steel tumbler,
and a high score for plastic lid (0.94). Inaccuracies concentrate
in the softer/textured group: plushie is sometimes predicted as

leather (0.11) and, to a lesser extent, notebook; leather and
notebook also show small mutual bleed while each remains at
0.86 on the diagonal. Wooden table is somewhat less distinct
(0.82 on-diagonal), with small leaks into nearby rigid classes
(e.g., 0.06 to ceramic). Cross-family errors are rare (rigid items
are seldom mistaken for soft ones), and the clean ”blank”
row/column indicates reliable no-contact rejection. Overall,
errors arise mainly among classes with acoustically similar
signatures (soft materials and wood) rather than across clearly
different materials.

These results indicate that a single, low-cost pin microphone
can achieve material discrimination with reasonably high ac-
curacy across a range of object types and interactions. Most
misclassifications occur between acoustically similar soft or
textured objects, suggesting that the sensor captures the dom-
inant frequency features but may struggle with fine-grained
distinctions. The reliable rejection of the blank class shows
that the system can consistently separate contact from no-
contact events, an essential property for integration into robot
control pipelines. Overall, the analysis suggests that low-cost
pin microphone provides a simple and effective way to add
contact awareness across materials and contact types, without
needing the resolution of more advanced tactile sensors.

B. Imitation Learning in Real-World Tasks

We first quantify the contribution of audio by ablating
sensory inputs on a picking and pouring task (see Fig. 6
a(i)). We use the same dataset but removing the audio tokens
from the input at training. As summarized in Table II, success
improves from 0.40 with vision only to 0.80 with vision+audio
over 10 roll-outs per setting. Fig. 6b illustrates this qualitative
difference: the vision-only policy often slips and fails to



Fig. 6. (a) Demonstration of four manipulation tasks: (i) Picking and pouring — the robot picks up a plastic bottle cap and pours a metallic screw inside; (ii)
Sound-based sorting and placement — the robot shakes the cap and sorts it left or right depending on whether a metallic screw is detected acoustically; (iii)
Unplugging connector — removing a tightly seated connector that requires high frictional force; and (iv) Material sorting and placement — distinguishing
between bare sticky-note pads and ones covered with a plastic film, and sorting them into separate containers. (b) Ablation study on sensing modality tested
on task (a-i). With vision-only input, the policy often results in insecure grasps and dropped caps due to the cap’s deformability. Incorporating microphone
(vision + audio) feedback enables the policy to detect contact states acoustically, achieving more secure and consistent grasps.

TABLE II
REAL WORLD TASK PERFORMANCE

Task Condition Input Success
modality rate

(i) Picking and Pouring — Vision only 0.40
— Vision + Audio 0.80

(ii) Sound Sorting Has Sound Vision + Audio 0.70
No Sound Vision + Audio 0.60

(iii) Unplugging Connector — Vision + Audio 1.00

(iv) Material Sorting Plastic End Vision + Audio 0.70
Normal End Vision + Audio 0.40

complete the pour, whereas adding audio yields a stable grasp
and consistent rotation aligned with demonstrations.

To showcase versatility beyond this ablation, we evaluate
three additional contact-rich tasks (Fig. 6). Table II reports
their success: unplugging achieves 1.00; sorting by sound
reaches 0.70 (has object) and 0.60 (no object); and sorting
by texture achieves 0.70 (plastic end) and 0.40 (normal end).
Each policy was trained on 20 demonstrations per task (10 per
condition for binary tasks) and is evaluated with 10 roll-outs
per condition.

Failures primarily stem from insufficient contact leading to
aborted attempts, or from incorrect sorting decisions caused by
ambient or motor-induced noise. Overall, audio cues proved
most reliable when contact interactions generated salient and
repeatable sound signatures (e.g., during unplugging). In addi-
tion to providing tactile-like feedback through sound, the soft
foam surrounding the pin microphone also functioned as a

compliant contact interface, improving grip stability and sound
coupling during manipulation.

These results show the practicality and value of incorpo-
rating a simple commercial microphone for robot learning.
Beyond providing complementary acoustic information that
vision alone cannot capture, the microphone itself serves as
a low-cost and easily integrable sensor that inherently adds
compliance through its soft foam housing. Such simplicity
lowers the barrier for deploying multimodal perception in
everyday robotic systems, making it feasible to scale imitation
learning beyond specialized research settings.

V. LIMITATIONS AND FUTURE WORK

While our results show that an off-the-shelf pin microphone
can provide useful contact information, several limitations
remain. The current system relies on a single consumer-grade
microphone with wireless audio, which introduces compres-
sion artifacts, latency, and occasional noise contamination.
Our experiments also focused on a modest set of objects
and interactions, meaning results may not fully generalize to
broader manipulation tasks.

Future work should therefore pursue a more rigorous eval-
uation. This includes comprehensive ablation studies to iso-
late the role of audio relative to vision and proprioception,
including different encoding methods, and expanded bench-
marks with larger, more diverse objects and contact types.
Furthermore, noise reduction by using pretrained dataset or
learning-based approach could improve noise to signal ratio,
which needs to be further benchmarked against existing tactile
sensors. Additionally, multi-microphone configurations and
improved placement strategies using other low-cost sensors



could further extend sensing range beyond single-point con-
tact.

VI. CONCLUSION

This work explored a minimal and accessible approach to
contact sensing for robot learning by repurposing an off-
the-shelf Bluetooth pin microphone as an acoustic tactile
sensor. We demonstrated that such a simple, low-cost de-
vice—integrated via a 3D-printed mount and used without
any custom electronics—can produce informative signals for
both perception and control. Despite its hardware simplicity,
the system achieved high material classification accuracy and
improved the robustness of imitation-learned manipulation
policies in contact-rich settings. While the performance does
not match that of high-resolution tactile sensors, our findings
suggest that audio can serve as a lightweight complementary
modality to vision and proprioception, offering meaningful
cues about contact state, material type, and interaction dynam-
ics. This trade-off between fidelity and accessibility highlights
a promising direction for scaling multimodal robot learning
beyond specialized laboratory setups.

Overall, we show that commodity microphones, when
thoughtfully integrated, can extend the sensory capabilities
of everyday robots. We view this not as a replacement for
tactile sensors, but as a practical step toward democratizing
multimodal sensing—enabling broader experimentation, re-
producibility, and adoption of contact-aware learning systems
in the robotics community.
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