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Abstract— Providing fast demonstrations for imitation learn-
ing (IL) in contact-rich manipulation is challenging: humans
cannot demonstrate at high speed, and naively accelerating
demonstrations alters contact dynamics and induces large
tracking errors. We present a method that autonomously re-
fines time-accelerated demonstrations by repurposing Iterative
Reference Learning Control (IRLC) to iteratively update the
accelerated reference from observed tracking errors. However,
applying IRLC directly at high speed produces large early-
iteration errors and unsafe transients, and starting from a
distant initial trajectory can distort the path. To address these
issues, we propose Incremental Iterative Reference Learning
Control (I2RLC), which gradually increases the speed while
updating the reference, yielding fast, high-fidelity trajectories.
We validate on real-robot arc-erasing tasks using a teleoper-
ation setup with a compliance-controlled follower and a 3D-
printed haptic leader. Both IRLC and I2RLC achieve up to 10x
faster demonstrations with reduced tracking error; moreover,
I2RLC improves spatial similarity to the original trajectories by
36.5% on average across two tasks and multiple speeds. We then
use the refined trajectories to train IL policies; the resulting
policies execute faster than the demonstrations. These results
indicate that gradual speed scheduling coupled with reference
adaptation provides a practical path to fast IL for contact-rich
manipulation.

I. INTRODUCTION

Imitation learning (IL) acquires manipulation skills from
human demonstrations without extensive manual program-
ming [1]. Recent advances [2], [3] achieve dexterous ma-
nipulation from few demonstrations. Yet, fast, contact-rich
manipulation remains challenging: robots must move quickly
while keeping interaction forces within safe bounds. This
study investigates how to obtain high-speed demonstrations
for contact-rich tasks safely.

A promising strategy for contact-rich IL is to pair a force-
controlled follower with a haptic teleoperated leader [4].
Recent studies have developed low-cost systems using bi-
lateral teleoperation with identical manipulators [5], [6], [7]
or an industrial collaborative follower with a 3D-printed
haptic leader [8], [9]. Whereas prior systems typically rely
on torque control, we employ a widely deployed position-
controlled arm equipped with an external force/torque (F/T)
sensor and a compliance controller as the follower, coupled
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Fig. 1. Concept of the proposed method. I2RLC iteratively refines
accelerated demonstrations while incrementally increasing the speed. The
refined trajectories are then used for fast, contact-rich imitation learning.

with a 3D-printed haptic leader. This configuration enhances
safety; however, system latency and the demands of precise
contact control make it difficult for operators to provide
high-speed demonstrations, resulting in datasets dominated
by slow-motion trajectories.

One approach is to build a dataset of accelerated demon-
strations by downsampling and replaying the control com-
mands of the demonstrations at the same control frequency.
However, such time-scaling alters contact dynamics and
often induces large spatial deviations from the original
trajectories. A more promising strategy is to execute the
accelerated trajectories and refine them using observed track-
ing errors. Prior methods in this vein either require human
intervention [10] or do not address contact-rich tasks [11].

This study proposes a method to generate time-accelerated
trajectories for contact-rich manipulation without additional
human intervention. Our key idea is to repurpose Itera-
tive Reference Learning Control (IRLC) [12]—originally
developed to reduce tracking error and improve insertion
success—to refine accelerated demonstrations. However, ap-
plying IRLC directly at high speed often induces large errors
in early iterations and unsafe behaviors, risking damage to



the environment or hardware and degrading spatial fidelity
to the original demonstrations. To address these issues, we
introduce Incremental Iterative Reference Learning Con-
trol (I2RLC), which progressively increases execution speed
while iteratively updating the reference, shown in Fig. 1. This
incremental scheme safely reduces tracking error and yields
faster trajectories suitable for contact-rich tasks.

We performed real-robot experiments on several erasing
tasks and compared tracking performance on accelerated
demonstrations under IRLC and I2RLC. Both methods re-
fined the reference trajectories and reduced tracking error;
however, I2RLC avoided large initial errors and preserved
spatial similarity to the demonstrations. We then used the
refined trajectories to train the Action Chunking Transformer
(ACT) [3]. The resulting policies executed faster than the
demonstrations.

Contribution: This study repurposes IRLC and extends
it to I2RLC, a simple method that safely refines accelerated
demonstrations to enable fast, contact-rich IL.

II. RELATED WORK

A. Fast Contact-Rich Manipulation

Fast contact-rich manipulation has been achieved via con-
trol design, compliant hardware, and simulation-to-real train-
ing. A hybrid force–impedance controller with geometry-
aware constraints enables torque-controlled robots to execute
fast wiping [13]. High-speed contact manipulation has been
demonstrated with highly backdrivable fingers [14] and pas-
sively compliant arms or grippers [15], [16], [17]. Simulation
has also been used to train high-speed cutting policies via
reinforcement learning [18]. These approaches typically rely
on geometric priors, specialized hardware, or simulation. In
contrast, this study targets fast contact-rich manipulation on
widely deployed position-controlled arms via IL.

Recent IL methods, such as Force-aware ACT variants [6],
[9], [19] and Diffusion Policy variants [20], [21], have
demonstrated contact-rich skills including insertion, wiping,
pivoting, and prying. Most work emphasizes robustness and
generalization; here, we focus on faster execution while
maintaining safe contacts. Our approach is complementary:
it produces accelerated trajectories that can be used to train
these IL backbones.

B. Variable-Speed Imitation Learning

Several studies address variable speed. Dynamic Move-
ment Primitives expose a time-scaling parameter to gener-
ate faster or slower trajectories [22]. Sakaino et al. pro-
posed variable-speed IL by conditioning on a speed pa-
rameter, showing interpolation and extrapolation to unseen
speeds [23]. Extensions adjust the policy’s inference fre-
quency to command higher speeds [10]. While these methods
are powerful, providing sufficiently fast demonstrations and
extrapolating to substantially higher speeds remains chal-
lenging. Downsampling-based data augmentation can expand
coverage [24], but does not guarantee that the augmented tra-
jectories remain executable when contact dynamics change.
DemoSpeedup proposes an entropy-guided method, which
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Fig. 2. The proposed pipeline comprises three stages: 1) collect demon-
strations; 2) downsample to obtain accelerated demonstrations and refine
them with I2RLC; and 3) train IL policies on the refined demonstrations.

enables safe demonstration acceleration [25], but does not
focus on spatial similarity to the original demonstration.
SAIL introduces latency-aware scheduling and adaptive
speed modulation, achieving up to four times faster execution
than demonstrations [26]. Yet, it relies on rigid, high-gain
position control that is less suitable for sustained contact.

C. Online Trajectory Refinement

Several approaches can refine demonstrations online. Re-
inforcement learning can leverage imperfect demonstrations
but typically requires substantial data collection [27], [28].
Operator-in-the-loop editing offers another route: Motion
Retouch overwrites failure segments during time-accelerated
execution via multilateral teleoperation [10], but it relies on
human intervention. Iterative Learning Control (ILC) is a
classical, data-efficient method for trajectory refinement [29].
Van den Berg et al. proposed an LQR-based ILC that
gradually speeds up demonstrated trajectories [11]; however,
it assumes linear dynamics and does not account for contact-
rich tasks, whose interactions are inherently nonlinear.

We build on IRLC [12] and extend it to I2RLC. IRLC
addresses limitations of conventional ILC for contact-rich
insertion using an impedance controller. We show that the
approach can also refine accelerated trajectories, yielding
demonstrations suitable for contact-rich IL.

III. METHODOLOGY

Our objective is to generate safe, accelerated demon-
strations suitable for contact-rich IL. Fig. 2 illustrates the
overview of our system. The setup comprises a position-
controlled follower, a wrist-mounted F/T sensor at the arm’s
end effector, a 3D-printed haptic leader, and an RGB cam-
era observing the workspace. An operator first provides
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Fig. 4. We downsample desired trajectories and provide them to FDCC.

demonstrations via the bilateral leader–follower interface.
Accelerated trajectories are produced by downsampling the
reference motion. Next, I2RLC refines these accelerated
trajectories. Finally, the refined demonstrations are used for
IL policy training.

A. Control System

Fig. 3 shows the block diagram of the control system.
3D-printed haptic-feedback leader: We employ a 3D-

printed leader that provides haptic feedback. The leader
builds on the General framework for low-cost and intuitive
teleoperation systems (GELLO) [31] and its extensions [8],
[9]. It has kinematics equivalent to that of the follower and
uses low-cost servomotors with current control. We adopt
force-feedback bilateral control: the follower’s measured F/T
Fext is mapped to the leader’s joint torques via a feedback
gain Kf . Gravity and friction compensation are also applied
to the leader to reduce operator effort.

Compliance controller: To enable contact-rich manip-
ulation, we use Forward Dynamics Compliance Control
(FDCC) [30]. FDCC allows a position-controlled robot with
an F/T sensor to move compliantly by combining impedance,
admittance, and force control. A key component is a virtual
forward-dynamics model that maps Cartesian wrench com-
mands to joint accelerations.

Let T ref denote the follower’s desired end-effector Carte-
sian pose computed from the leader’s joint angles, and let
Kc denote the Cartesian stiffness. The commanded Cartesian
force Fc is determined by a desired net wrench Fnet and

PD gains Kp,Kd. The desired joint acceleration θ̈ is then
obtained from the virtual forward-dynamics model given Fc,
the current joint angles θ, and a simplified inertia matrix
Mvm.

B. Data Collection and Demonstration Acceleration

We collect demonstrations of length T time steps, forming
D = {(ot,T ref

t )}Tt=1 , where ot comprises the F/T readings
Fext, an RGB image, a homogeneous transformation ma-
trix of the measured follower’s Cartesian pose Tt, and the
follower’s joint angles θ. To obtain accelerated demonstra-
tions, we downsample the reference trajectory by an n-fold
speedup (n ∈ {1, 2, ..., N}), resulting in τ̂n = {Tnt}⌊T/n⌋

t=1

and τ̂ ref
n = {T ref

nt }
⌊T/n⌋
t=1 and (see Fig. 4), where ⌊·⌋

denotes the floor function. We then command the FDCC with
setpoints T̂ ref

n at a fixed control rate and use T̂n for IRLC
described in the later section.

C. Incremental Iterative Reference Learning Control

Classical iterative learning control suppresses modeling
errors and disturbances by augmenting the torque command
with a term learned from the previous trial’s tracking error.
It is used primarily for high-speed, high-precision position
control and has typically been applied to non-contact tasks.

By contrast, recent work proposes Iterative Reference
Learning Control (IRLC) [12], which places an impedance
controller at the low level and updates its reference pose
rather than directly correcting torques. This design preserves
the intrinsic compliance of impedance control while enabling
iterative refinement, making it suitable for contact-rich tasks.

We aim to refine the accelerated demonstrations using
IRLC. The update rule can be expressed as follows:

iτ̄ ref
n =


{

(i−1)T̄ ref
t exp

[
l log

{
(i−1)T−1

t T̂nt

}]}⌊T/n⌋

t=1

(i ≧ 2),

τ̂ ref
n (i = 1),

(1)
where iτ̄ ref is an the updated reference trajectory at iteration
i ∈ {1, 2, . . . , I}, then is inputted to FDCC. l is a learning
gain. Here, exp and log denote the matrix exponential and



Algorithm 1 Incremental Iterative Reference Learning Con-
trol (I2RLC)
Require: Demonstration data D; max speed N ; max up-

dates per speed I; learning gain l
1: Precompute accelerated references from the demo:
{τ̂(n), τ̂ ref

(n) = DOWNSAMPLE(D, n)}Nn=1

2: τ̄ ref
(1) ← τ̂ ref

(1) ▷ initial reference at 1×
3: for n = 2 to N do ▷ incrementally increase speed
4: τ̄ ref

(n) ← τ̄ ref
(n−1) ▷ warm start from previous speed

5: for i = 1 to I do ▷ IRLC updates at n-fold speedup
6: τ̄ ref

(n) ← UPDATE
(
τ̄ ref
(n) , τ , τ̂(n), l

)
▷ Eq. (2)

7: τ ← PLAYBACK(τ̄ ref
(n) )

8: end for
9: end for

10: return {τ̄(n)}Nn=1 ▷ refined accelerated demonstrations

logarithm, respectively, and these are used to handle 3D
rotation.

We apply this approach to replay recorded demonstrations
at high speed. Specifically, we downsample the demonstra-
tion to obtain an accelerated reference, execute it, measure
the tracking error compared to the original, and update the
reference. We repeat this procedure for several iterations.
However, larger n-fold speedups can cause the uncorrected
motion to deviate substantially, especially in the early itera-
tions, leading to serious failures in contact-rich tasks.

To address this, we propose Incremental Iterative Refer-
ence Learning Control (I2RLC), which increases the exe-
cution speed gradually across iterations while updating the
reference from observed tracking errors. This incremental
scheme enables iterative playback that remains close to
the original trajectory even under substantial speedups. The
update rule is:

iτ̄ ref
n =


{

(i−1)T̄ ref
t exp

[
l log

{
(i−1)T−1

t T̂nt

}]}⌊T/n⌋

t=1

(i ≧ 2),
I τ̄ ref

n−1 (i = 1),
(2)

If i ≥ 2, the update rule is identical to IRLC. For i = 1,
we warm-start with I τ̄ ref

n−1 , the reference obtained after I
iterations at the (n − 1)-fold speed stage. After completing
the iterations at stage n, advance to the next stage by setting
n ← n + 1. This warm start mitigates large tracking errors
at the initial iteration. Algorithm 1 summarized I2RLC’s
procedures.

D. IL Training

Given the refined accelerated demonstrations, we train
IL policies. While I2RLC can be used for arbitrary IL
algorithms, this study adopts ACT [3] because of its sample
efficiency. ACT has a Transformer architecture and predicts
sequences of future actions. These actions are stored and
temporally ensembled for smoother action generations. The
ACT input comprises Fext, an RGB image, the follower’s
pose T , and the output is the sequence of T ref . We used
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Fig. 5. Experimental setup.

TABLE I
CONTROLLER PARAMETERS

x y z rx ry rz

Kc 300 300 300 100 100 100
Kp 0.0252 0.0252 0.0252 0.36 0.36 0.36
Kd 0.0072 0.0072 0.0072 0.0072 0.0072 0.0072

vector form for 6D pose, which consists of the 3D translation
vector and the 3D rotation vector.

IV. EXPERIMENTS

We validate our method on a real robot. Our evaluation
addresses two questions: 1) Can I2RLC refine accelerated
demonstrations, and 2) Can the refined trajectories be used
effectively for IL? To this end, we conduct contact-rich
erasing tasks and compare tracking performance, then train
IL policies using the refined demonstrations.

A. Robot System

Fig. 5 shows our experimental setup. We used a Universal
Robots UR5e with a built-in F/T sensor as the follower,
and an Intel RealSense D435 camera positioned at a fixed
viewpoint. An eraser holder attached to the end effector in-
corporates springs to promote stable, compliant contact. The
leader employed six servomotors: three Dynamixel XM430-
W350-T units for the shoulder and elbow joints, and three
Dynamixel XC330-T288-T units for the wrist joints.

The control frequency of the FDCC and the leader was 500
Hz, and the communication frequency between the leader
and the follower was 50 Hz. The stiffness parameter and PD
gain for FDCC in Fig. 3 were shown in Table I. The control
System was implemented on ROS1 Noetic.

We used a desktop PC powered by an AMD Ryzen
Threadripper 7960X CPU and two NVIDIA RTX 4000 Ada
GPUs for robot control and train IL.

B. Erasing Tasks

Flat-Surface Arc Erasing: We evaluated a contact-rich,
trajectory-sensitive task in which the robot erases an arc
drawn on a whiteboard using an end-effector-mounted eraser.
Because the target is an arc rather than a straight line,
a naively time-downsampled replay causes the end-effector
path to deviate from the demonstration and may fail.
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Fig. 6. Snapshots of erasing tasks in flat and curved surfaces (10x speed). I2RLC successfully erased the blue lines.

Fig. 7. Trajectory comparison for flat surface arc erasing at 10x speed.
Shaded regions indicate segments where IRLC incurs larger errors, corre-
sponding to the residual line segments in Fig. 6(b).

Fig. 8. Trajectory comparison for curved surface arc erasing at 10x speed.

TABLE II
IRLC AND I2RLC TRAJECTORY ERROR COMPARISON

Speed 3x 4x 5x 6x 7x 8x 9x 10x

6*Flat Playback 20.65 27.19 32.64 37.68 42.58 46.40 50.47 53.68
MAE ↓ [mm] IRLC 3.43 3.65 3.88 4.00 4.16 4.36 4.61 4.78

I2RLC 5.13 5.68 6.39 7.20 7.44 7.91 8.37 8.57

Playback 4.265 4.890 5.104 5.344 5.417 5.486 5.592 5.534
DTW ↓ IRLC 0.998 1.213 0.964 0.816 0.662 0.625 0.587 0.598

I2RLC 0.545 0.488 0.462 0.524 0.474 0.532 0.442 0.414

6*Curved Playback 27.96 36.96 42.11 51.77 53.02 58.23 64.68 63.59
MAE ↓ [mm] IRLC 4.54 4.93 5.08 8.23 6.08 6.77 7.70 7.52

I2RLC 5.57 6.03 6.50 7.62 7.57 8.30 8.71 8.93

Playback 3.245 3.468 3.515 5.217 4.582 5.056 5.807 5.189
DTW ↓ IRLC 1.094 1.050 0.902 1.280 0.897 0.837 0.975 0.836

I2RLC 1.061 0.864 0.744 0.611 0.531 0.500 0.438 0.472

Curved-Surface Arc Erasing: As a more challenging
contact-rich task, the robot traces and erases an arc on a
convex cylindrical surface. High-speed execution is difficult
due to the increased likelihood of the eraser lifting off or
applying excessive contact force.

C. Incremental Iterative Reference Learning Control
1) Setup: We compared trajectory error for IRLC at a

fixed target speed against I2RLC, which increased speed
incrementally up to 10x. At each speed, we performed
three update iterations (I = 3). The learning rate l was
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Fig. 9. Learning curves (MAE, left; DTW, right) for IRLC and I2RLC on the arc-erasing task. Line shade encodes speed (darker = higher speed multiplier).
For fairness, the total number of update iterations is matched across methods. I2RLC exhibits smaller initial-iteration errors and lower DTW.

0.4. For fairness, we matched the total number of update
iterations across methods; in I2RLC, the updated trajectory
at one speed was carried forward to the next. We report two
trajectory-tracking metrics: mean absolute error (MAE) and
dynamic time warping (DTW). MAE is the time-averaged
absolute pointwise position error—the same feedback signal
used by IRLC. DTW quantifies spatial discrepancy between
trajectories by allowing nonuniform temporal alignment.

2) Results: To visualize the effect of the proposed
method, Fig. 6 presents snapshots from the flat and curved
surface erasing tasks executed at the final iteration of 10x
speed. A naively downsampled replay failed to erase most of
the blue line (Fig. 6a). IRLC removed the majority of the line
but left some residual segments (Fig. 6b). By contrast, I2RLC
erased the blue line completely (Fig. 6c). Fig. 7 and 8 present
2D plots of the executed trajectories at the final iteration of
the 10x speed stage. While IRLC and I2RLC follow similar
paths, IRLC exhibits larger errors within the shaded regions,
which correspond to the residual line segments visible in
Fig. 6b.

For quantitative analysis, Table III reports tracking errors
between the executed and downsampled trajectories at the
final iteration of each speed. The naive playback baseline
yielded the largest MAE and DTW. IRLC achieved the
lowest MAE, whereas I2RLC achieved the lowest DTW,
indicating better spatial alignment.

Sect. IV show learning curves for IRLC and I2RLC.
Both methods reduce MAE and DTW over iterations. Under
IRLC, the trajectory often deviated significantly in the initial
iterations, producing large errors in both MAE and DTW.

Although the task succeeded in our setting, such transients
may saturate actuators or lead to failure in other tasks. By
contrast, I2RLC maintained both errors within a narrower
range throughout, including early iterations, substantially
reducing the risk of unstable behavior before convergence.

At the final iteration, IRLC yielded a lower MAE. This
is because I2RLC followed a slower target in the initial
iteration, which introduces a temporal lag that inflates MAE.
Conversely, I2RLC achieves a lower DTW, indicating better
spatial fidelity to the demonstrated path. Starting from more
distant initial references, IRLC can distort the trajectory; in
the erasing tasks, this led to occasional departures from the
target curve and residual marks.

In summary, both IRLC and I2RLC effectively refine
accelerated trajectories, with I2RLC offering smaller errors
in early iterations and better preservation of spatial similarity.

D. Imitation Learning

1) Setup: For the flat surface arc erasing task, we col-
lected two demonstrations for each of three arc patterns
(six demonstrations total). We then generated accelerated
playbacks up to 6x using I2RLC, increasing the speed
incrementally and running three refinement iterations at each
speed stage. Finally, we executed 10 playback rollouts per
speed with Gaussian disturbances, yielding a 60-episode
dataset. We trained ACT for 15000 epochs with a chunk
size of 50 and an inference rate of 50 Hz.

At inference time, we evaluated the trained policy on the
flat surface task at both seen and unseen arc positions. The
arc position patterns are shown in Fig 10. We define the
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Fig. 10. Line patterns of flat surface arc erasing task

TABLE III
ERASED-AREA RATE WITH IMITATION LEARNING↑[%].

line pattern 1 2 3 4 5 6 7

Trained (T)
or

Unseen (U)
U T U T U T U

ACT 53±9 62±5 56±6 85±14 67±9 67±17 68±9

erased-area rate as the fraction of the initial blue-line area
that is removed. From pre- and post-execution images, we
segment the blue line to obtain binary masks; the removed
area is computed from the mask difference and normalized
by the initial mask area.

2) Results: Table III reports the erased-area rates mea-
sured from images. The learned policy executed faster than
the original demonstration and erased over 50% of the blue-
line segments, but it left slightly more residual line area than
direct playback. Two factors may contribute to this gap: 1)
the output post-processing (Temporal Ensemble) used in our
IL pipeline, which can introduce latency and damp rapid
corrections; and 2) occlusions late in the task, when the end
effector obscures the target line.

In summary, ACT with faster demonstrations achieved an
erasure of over 50% of the blue-line segments. However,
designing IL methods for high-speed manipulation remains
an important direction for future work.

V. CONCLUSION

We introduced Incremental Iterative Reference Learning
Control (I2RLC), a method for reliable high-speed replay
of demonstrations in contact-rich imitation learning (IL)
without additional human intervention. I2RLC incrementally
increases execution speed while iteratively correcting the
reference from observed tracking errors, enabling substantial
speedups up to 10x with small tracking errors and preserved
spatial fidelity. Combined with low-level compliance control,
this approach applies naturally to contact-rich manipulation.
The resulting refined trajectories are compatible with stan-
dard IL algorithms. A current limitation is the iteration cost
required to achieve large speedups. Future work includes
optimizing learning gains and speed-scheduling policies, as
well as developing faster imitation learning algorithms using
the refined accelerated demonstrations.

REFERENCES

[1] S. An, Z. Meng, C. Tang, Y. Zhou, T. Liu, F. Ding, S. Zhang, Y. Mu,
R. Song, W. Zhang et al., “Dexterous manipulation through imitation
learning: A survey,” arXiv preprint arXiv:2504.03515, 2025.

[2] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake,
and S. Song, “Diffusion policy: Visuomotor policy learning via ac-
tion diffusion,” The International Journal of Robotics Research, p.
02783649241273668, 2023.

[3] T. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” Robotics: Science
and Systems, 2023.
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